www.schmid-m.com DC/DC Converters

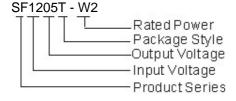
SE_T-W2 & SF_T-W2 Series

0.25W, FIXED INPUT, ISOLATED & UNREGULATEDDUAL/SINGLE OUTPUT DC-DC CONVERTER UTRALMINIATURE SMD PACKAGE

FEATURES

Single Voltage Output SMD Package Style **Industry Standard Pinout** No Heatsink Required **3KVDC** Isolation **High Power Density** Internal SMD construction Temperature Range: -40°C~+85°C No External Component Required **RoHS Compliance**

APPLICATIONS


The SE_T-W2 & SF_T-W2 Series are specially designed for applications where a group of polar power supplies are isolated from the input power supply in a distributed power supply system on a circuit board.

These products apply to:

- 1) Where the voltage of the input power supply is fixed (voltage variation $\leq \pm 10\%$);
- 2) Where isolation is necessary between input and output (isolation voltage ≤3000VDC);
- 3) Where the regulation of the output voltage and the output ripple noise are not demanding.

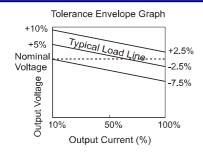
Such as: purely digital circuits, ordinary low frequency analog circuits, and IGBT power device driving circuits.

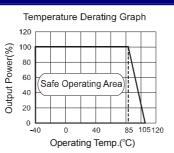
MODEL SELECTION

PRODUCT PROGRAM						
	Input		Output			
Part Number	Voltage (VDC)		Voltage	Current (mA)		Efficiency (%, Typ.)
	Nominal	Range	(VDC)	Max	Min	
SF0303T-W2	3.3	.3 3.0 ~ 3.6	3.3	75	8	60
SF0305T-W2	3.3	3.0 ~ 3.0	5	50	5	60
SF0505T-W2	5	5 4.5 ~ 5.5	5	50	5	64
SF0509T-W2			9	28	3	65
SF0512T-W2			12	21	2	67
SF0515T-W2			15	17	2	66
SE0505T-W2			±5	±25	±3	64
SE0509T-W2			±9	±14	±2	65
SE0512T-W2			±12	±10.5	±1	67
SE0515T-W2			±15	±8.5	±1	66
SF1205T-W2	12 10.8 ~ 13.2	10.8 ~ 13.2	5	50	5	65
SF1209T-W2			9	28	3	64
SF1212T-W2			12	21	2	63
SF1215T-W2			15	17	2	64
SE1205T-W2			±5	±25	±3	65
SE1209T-W2			±9	±14	±2	64
SE1212T-W2			±12	±10.5	±1	63
SE1215T-W2		±15	±8.5	±1	64	

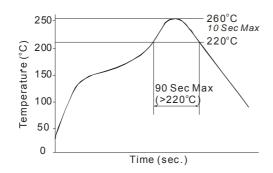
Units								
W								
1								
%								
	See tolerance envelope graph							
	%/°C							
	mVp-p							
	KHz							

*test ripple and noise by "parallel cable" method. See detailed operation instructions at Testing of Power Converter section, application notes.

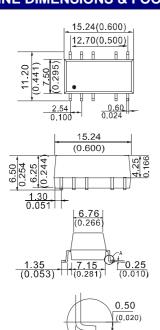

Note:


- 1.All specifications measured at T_A=25°C, humidity<75%, nominal input voltage and rated output load unless otherwise specified.
- 2. See below recommended circuits for more details.

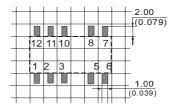
COMMON SPECIFICATION						
Item	Test Conditions	Min	Тур	Max	Units	
Storage humidity				95	%	
Operating temperature		-40		85		
Storage temperature		-55		125	°C	
Temp. rise at full load			15	25		
Lead temperature	1.5mm from case for 10 seconds			260		
Cooling		Free air convection				
Isolation voltage	Tested for 1 minute and 1mA max	3000			VDC	
Isolation resistance	Test at 500VDC	1000			ΜΩ	
Short circuit protection*				1	second	
package material		Epoxy Resin(UL94-V0)				
MTBF		3500			K Hours	
Weigh			1.71		g	


*Supply voltage must be discontinued at the end of short circuit duration.

TYPICAL CHARACTERISTICS



RECOMMENDED REFLOW SOLDERING PROFILE


OUTLINE DIMENSIONS & FOOTPRINT DETAILS

(0.053)

First Angle Projection
RECOMMENDED FOOTPRINT
Top view, grid:2.54mm(0.1inch),
diameter:1.00mm

FOOTPRINT DETAILS

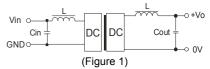
FOOTPRINT DETAILS

Pin	Single	Dual		
2	Vin	Vin		
1	G/D	GVD		
5	0V	0V		
6	NC	- VO		
8	+Vo	+Vo		
Others	NC	NC		

Note:

5,00°

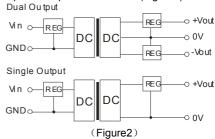
Unit:mm(inch)
Pin section:0.50*0.30mm(0.020*0.012inch)
Pin tolerances:±0.10mm(±0.004inch)
General tolerances:±0.25mm (±0.010inch)


APPLICATION NOTE

Requirement on output load

To ensure this module can operate efficiently and reliably, During operation, the minimum output load is **not less than 10%** of the full load, and that **this product should never be operated under no load!** If the actual output power is very small, please connect a resistor with proper resistance at the output end in parallel to increase the load.

Recommended circuit


If you want to further decrease the input/output ripple, an "LC" filtering network may be connected to the input and output ends of the DC/DC converter, see (Figure 1).

It should also be noted that the inductance and the frequency of the "LC" filtering network should be staggered with the DC/DC frequency to avoid mutual interference. However, the capacitance of the output filter capacitor must be proper. If the capacitance is too big, a startup problem might arise. It's not recommended to connect any external capacitor in the application field.

Output Voltage Regulation and Over-voltage Protection Circuit

The simplest device for output voltage regulation, over-voltage and over-current protection is a linear voltage regulator with overheat protection that is connected to the input or output end in series (Figure 2).

Overload Protection

Under normal operating conditions, the output circuit of these products has no protection against overload. The simplest method is to connect a self-recovery fuse in series at the input end or add a circuit breaker to the circuit.

No parallel connection or plug and play.